

Module ChE-311 Biochemical Engineering

Downstream processing Exercises Liquid-solid separation

Simon Crelier, HES-SO Valais – Sion

simon.crelier@epfl.ch
+41 (0)27 606 86 65

Exercise 2.1

Calculation of settling velocity

1. Calculate the terminal settling velocity in water at 20 °C for the particles below, using the appropriate model/flow regime (proceed iteratively if needed).

The properties of water (at 20°C) are: $\rho = 0.9982 \text{ g/cm}^3$ $\mu = 1.0 \text{ mPa}\cdot\text{s}$

Particle	Diameter [μm]	Density [$\text{g}\cdot\text{cm}^{-3}$]
<i>E. coli</i>	1.2	1.01
<i>S. cerevisiae</i>	6.0	1.01
Microcarrier	150	1.02
Seasand	400	2.65
Lead shots	1500	11.40

2. What would be the impact of a temperature increase on the settling velocity?

Exercise 2.2

Disk stack centrifuge

Chlorella cells are grown in an open pond and this biomass needs to be harvested using a disk stack centrifuge. The terminal settling velocity of the cells in water at 20 °C, $v_{lim,p}$, has been measured and is equal to $1.07 \cdot 10^{-4}$ cm/s. The flow is laminar.

The centrifuge has 80 disks with an angle of 40° from the vertical. These disks have an external radius of 15.7 cm, while the internal radius is 6 cm. It is planned to work at 6000 rpm.

1. Estimate the equivalent diameter of the cells if their density is $1.01 \text{ g} \cdot \text{cm}^{-3}$
2. Calculate the volumetric capacity of the centrifuge under the above-described working conditions

Exercise 2.3

Filtration of calcium silicate

Calcium silicate particles have been filtered on a paper disk 9 cm in diameter and at two different values of Δp , namely 69 and 138 kPa. The liquid is water at 20 °C, which has the following properties: $\rho = 0.9982 \text{ g/cm}^3$ $\mu = 1.0 \text{ mPa}\cdot\text{s}$. The solid concentration in the suspension, c_{ms} , is 50 kg/m³.

The filtrate volume has been registered as a function of time. The corresponding data are in the table below.

1. Determine the filter resistance R_F and the cake specific resistance α for each trial.
2. Is the cake of a compressible nature?

$\Delta p = 69 \text{ kPa}$	$t \text{ [s]}$	0.0	2.0	5.0	8.6	15.1	21.8	39.9	66.0	95.7
	$V_f \text{ [L]}$	0.000	0.096	0.198	0.294	0.398	0.497	0.698	0.900	1.098

$\Delta p = 138 \text{ kPa}$	$t \text{ [s]}$	0.0	2.0	4.5	7.0	15.8	28.6	45.0	63.3	82.0
	$V_f \text{ [L]}$	0.000	0.104	0.203	0.304	0.507	0.702	0.903	1.106	1.202